Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials.

نویسندگان

  • Hai Lin
  • Dong Yang
  • Song Han
  • Yangjie Liu
  • Helin Yang
چکیده

In this paper, we theoretically and experimentally demonstrate a three-dimensional metamaterial that can motivate electromagnetic induced transparency (EIT) by using circular polarized wave as stimulations. The unit cell consists of a pair of metallic strips printed on both sides of the printed circuit board (PCB), where a conductive cylinder junction is used to connect the metal strips by drilling a hole inside the substrate. When a right circularly polarized wave is incident, destructive interference is excited between meta-atoms of the 3D structure, the transmission spectrum demonstrates a sharp transparency window. A coupled oscillator model and an electrical equivalent circuit model are applied to quantitatively and qualitatively analyze the coupling mechanism in the EIT-like metamaterial. Analysis in detail shows the EIT window's amplitude and frequency are modulated by changing the degree of symmetry breaking. The proposed metamaterial may achieve potential applications in developing chiral slow light devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handedness Dependent Electromagnetically Induced Transparency in Hybrid Chiral Metamaterials

We provide the first experimental demonstration of the handedness dependent electromagnetically induced transparency (EIT) in chiral metamaterials during the interaction with circularly polarized waves. The observed chiral-sensitive EIT phenomena arise from the coherent excitation of a non-radiative mode in the component split ring resonators (SRRs) produced by the corresponding Born-Kuhn type ...

متن کامل

The Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials

Increasing development of nano-technology in optics and photonics by using modern methods of light control in waveguide devices and requiring miniaturization and electromagnetic devices such as antennas, transmission and storage as well as improvement in the electromagnetic tool, have led researchers to use the phenomenon of electromagnetically induced transparency (EIT) and similar phenomena i...

متن کامل

Wave propagation retrieval method for chiral metamaterials.

In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence of artificial branches of the refractive index and simplicity in implementation. We prove the validit...

متن کامل

Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms

We investigate, both theoretically and experimentally, the phenomenon of polarization rotation of a weak, linearly-polarized optical (probe) field in an atomic system with multiple three-level electromagnetically induced transparency (EIT) sub-systems. The polarization rotation angle can be controlled by a circularly-polarized coupling beam, which breaks the symmetry in number of EIT subsystems...

متن کامل

Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials.

Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 24 26  شماره 

صفحات  -

تاریخ انتشار 2016